ContiPressureCheck™
The tire pressure monitoring system

USA Installation Manual
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>Mounting brackets</td>
<td>24</td>
</tr>
<tr>
<td>4.8</td>
<td>Wiring truck/bus with auxiliary receiver</td>
<td>25</td>
</tr>
<tr>
<td>4.9</td>
<td>Pressure control indicator trailer/semi-trailer</td>
<td>26</td>
</tr>
<tr>
<td>4.10</td>
<td>Wiring trailer/semi-trailer</td>
<td>27</td>
</tr>
<tr>
<td>4.11</td>
<td>Hand-held tool, diagnostic cable</td>
<td>28</td>
</tr>
<tr>
<td>4.12</td>
<td>Spare parts</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Installation</td>
<td>30</td>
</tr>
<tr>
<td>5.1</td>
<td>Scope of supply</td>
<td>30</td>
</tr>
<tr>
<td>5.2</td>
<td>Disposal of the packaging</td>
<td>30</td>
</tr>
<tr>
<td>5.3</td>
<td>General instruction</td>
<td>31</td>
</tr>
<tr>
<td>5.4</td>
<td>Installation of the tire sensor</td>
<td>31</td>
</tr>
<tr>
<td>5.5</td>
<td>Final inspection of the bonding of the rubber container</td>
<td>41</td>
</tr>
<tr>
<td>5.6</td>
<td>Tire sensor activation before fitting tire</td>
<td>41</td>
</tr>
<tr>
<td>5.7</td>
<td>Removing ventilation ribs in the bonding area</td>
<td>42</td>
</tr>
<tr>
<td>5.8</td>
<td>Retreading</td>
<td>43</td>
</tr>
<tr>
<td>5.9</td>
<td>Continued use of the tire sensor after changing a tire</td>
<td>43</td>
</tr>
<tr>
<td>5.10</td>
<td>Use of balancing substances in commercial vehicle tires</td>
<td>44</td>
</tr>
<tr>
<td>5.11</td>
<td>Installation of the central control unit on HGV/bus</td>
<td>45</td>
</tr>
<tr>
<td>5.12</td>
<td>Installing an auxiliary receiver (optional)</td>
<td>47</td>
</tr>
<tr>
<td>5.13</td>
<td>Installation of the wiring harness from central control unit to auxiliary receiver</td>
<td>49</td>
</tr>
<tr>
<td>5.14</td>
<td>Installation of the wiring harness from central control unit to fuse box</td>
<td>50</td>
</tr>
<tr>
<td>5.15</td>
<td>Installation of the display</td>
<td>51</td>
</tr>
<tr>
<td>5.16</td>
<td>Installation of the wiring harness from display to fuse box</td>
<td>52</td>
</tr>
<tr>
<td>5.17</td>
<td>Installation of the central control unit and an optional auxiliary receiver on the trailer/semi-trailer</td>
<td>54</td>
</tr>
<tr>
<td>5.18</td>
<td>Installation and adjustment of the pressure control indicator</td>
<td>55</td>
</tr>
<tr>
<td>5.19</td>
<td>Installation of the wiring harness from the central control unit to pressure control indicator, diagnostic port and distributor box</td>
<td>63</td>
</tr>
<tr>
<td>5.20</td>
<td>Checks after installation</td>
<td>64</td>
</tr>
</tbody>
</table>
6 Initialization using hand-held tool .. 65
7 Test Drive for System Testing .. 68
 7.1 Test drive for system testing on the HGV/bus 68
 7.2 Test drive for system testing on the semi-trailer 70
 7.3 Preparation for repeating a test drive ... 71
8 Modification of the CPC system configuration 72
 8.1 Automatic wheel change detection (optional function)* 72
 8.2 Manual adaptations with the hand-held tool 73
9 Documentation of system installation .. 73
10 Information on the system .. 74
 10.1 General ... 74
 10.2 Operation .. 74
11 Diagnostics .. 74
 11.1 Diagnostics via display ... 77
12 Dismantling and Disposal ... 80
 12.1 Dismantling .. 80
 12.2 Disposal .. 82
13 Declaration of conformity .. 84
14 Certifications .. 84
 14.1 Radio permit .. 84
 14.2 General operating permit .. 84
 14.3 ADR ... 84
15 Index .. 85
1 General

1.1 Information on this Installation Manual

This Installation Manual is intended for personnel in workshops with technical know-how in vehicle electrics and tire fitting.

Knowledge of its contents enables the ContiPressureCheck™ System (CPC System) to be installed on commercial vehicles.

Special instruction by qualified personnel of Continental Reifen Deutschland GmbH and their contractors is necessary for installing and activating the system.

This Installation Manual is a crucial aid to the successful and safe installation of the system. It contains important instructions on installing and operating the system correctly and safely. Observation of its contents helps avoid dangers, increase the reliability and service life of the system and maintain the system warranty, but is no substitute for the above-mentioned special instruction.

Keep the Installation Manual in the immediate vicinity of the place of work at all times. It must be read and observed by everyone involved in the:

- Installation,
- Activating,
- Operation, and/or
- Diagnostics

of the system.

In addition to this Installation Manual, the instruction manuals for the installed components from the respective suppliers must also be observed.

Observe the instructions contained – in particular the safety instructions.
1.2 Liability disclaimer

The manufacturer assumes no liability for damage and operational faults resulting from:

- Failure to observe this Installation Manual,
- Use for other than the intended purpose,
- Installation by unqualified or insufficiently qualified personnel,
- Faulty installation,
- Use of other than original equipment manufacturer (OEM) spare parts and accessories,
- Technical modifications and changes not approved by the manufacturer,
- Failure to perform the prescribed visual inspection (see Chapter 5.5 Final inspection of the bonding of the rubber container) after installation of the tire sensor.

1.3 Explanation of symbols

Warnings are additionally identified in this Installation Manual by warning symbols. The following warning symbols are used in this Installation Manual:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General warning</td>
</tr>
<tr>
<td></td>
<td>Electric shock hazard</td>
</tr>
<tr>
<td></td>
<td>Hazard from health-endangering or irritant substances</td>
</tr>
<tr>
<td></td>
<td>General instructions and useful suggestions on handling</td>
</tr>
<tr>
<td></td>
<td>Instructions on observing environmental regulations for disposal</td>
</tr>
<tr>
<td></td>
<td>Electrical/electronic components with this symbol must not be disposed of in the normal domestic refuse.</td>
</tr>
</tbody>
</table>
1.4 Abbreviations

The following abbreviations are used in this Installation Manual:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR</td>
<td>European Agreement concerning the International Carriage of Dangerous Goods by Road (Accord européen relatif au transport international des marchandises Dangereuses par Route)</td>
</tr>
<tr>
<td>ATL*</td>
<td>Auto-Trailer Learning</td>
</tr>
<tr>
<td>CAN</td>
<td>Data bus system for communication between vehicle systems (Controller Area Network)</td>
</tr>
<tr>
<td>CCU</td>
<td>Central Control Unit</td>
</tr>
<tr>
<td>CPC</td>
<td>ContiPressureCheck™</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DTC</td>
<td>Error message (Diagnostic Trouble Code)</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>IGN</td>
<td>Ignition</td>
</tr>
<tr>
<td>HGV</td>
<td>Heavy Goods Vehicles</td>
</tr>
<tr>
<td>HHT</td>
<td>Hand-Held Tool</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>RSSI</td>
<td>Transmission power of the tire sensors</td>
</tr>
<tr>
<td>Tire ID</td>
<td>Tire Identification Number</td>
</tr>
<tr>
<td>StVZO</td>
<td>German Road Traffic Licensing Act</td>
</tr>
<tr>
<td>U-bat</td>
<td>Battery voltage</td>
</tr>
</tbody>
</table>

* ATL is an optional function and is not activated on all CPC systems.
1.5 Warnings

The following warnings are used in this Installation Manual:

<table>
<thead>
<tr>
<th>Warning Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>A warning of this hazard level indicates a hazardous situation. If the hazardous situation is not avoided, it can result in serious injuries. Follow the instructions in this warning to avoid serious injuries to persons.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>A warning of this hazard level indicates a potentially hazardous situation. If the hazardous situation is not avoided, it can result in injuries. Follow the instructions in this warning to avoid injuries to persons.</td>
</tr>
<tr>
<td>ATTENTION</td>
<td>A warning of this hazard level indicates potential damage to equipment. If the situation is not avoided, it can result in equipment damage. Follow the instructions in this warning to avoid the equipment damage.</td>
</tr>
<tr>
<td>NOTE</td>
<td>A note draws attention to additional information of importance for further work or which simplifies the work step described.</td>
</tr>
</tbody>
</table>
1.6 Copyright

This Installation Manual and all documents supplied with this system are protected by copyright.

These documents may not be duplicated or made accessible to third parties, in particular to competing companies, without the express approval of Continental Reifen Deutschland GmbH.

Please note that this system is protected by patent.

1.7 Warranty terms

The warranty can be found at:
www.contipressurecheck.com

1.8 Manufacturer's address

Continental Reifen Deutschland GmbH
Büttnerstraße 25
30165 Hannover
Germany

www.contipressurecheck.com

1.9 After-sales service

In the event of technical questions on the system, first contact an authorized workshop.

Further information can also be found at:
www.contipressurecheck.com
2 Safety

2.1 General

This chapter contains important information on all aspects of safety.

Apart from the general safety instructions given in this chapter, additional safety instructions relevant to the operations covered are given in each chapter.

Hazards that could occur during a particular work step are described before the instructions for the step.

WARNING

Hazard from failure to observe the safety instructions!

Failure to observe the safety instructions and working instructions given in this Installation Manual can create considerable hazards.

► Observe the warnings and instructions given here.

2.2 Prohibition of modifications

All modifications and changes to the system are prohibited.

The manufacturer assumes no liability for any resulting damage.
2.3 Intended use

This system is intended exclusively for measuring the inflation pressure in truck/bus tires and for transmitting the values by radio to an external evaluation unit.

Use for any other or further purpose does not constitute an intended use.

WARNING

Hazard from use for other than the intended purpose!

Any use other than and/or going beyond the intended use of the device can lead to dangerous situations.

- Use the system only for its intended purpose.
- Comply with all instructions in this Installation Manual.

No claims of any kind will be accepted for damage resulting from use for other than the intended purpose.

The risks associated with such improper use shall be borne solely by the user.

2.3.1 Use of the tire sensors

The operator must ensure that tires in which sensors are installed are only used on vehicles where monitoring by the CPC system is ensured.

This also includes the monitoring of the trailer via the auxiliary receiver on the drawing vehicle.

Before further use of the tires on other vehicles where monitoring by the CPC system is not assured, remove the sensors from the tires.
2.4 Fundamental safety instructions

Observe the following instructions to avoid accidents during the installation of the system:

- Observe the vehicle manufacturer’s safety instructions.
- Take all necessary precautions before jacking up the vehicle (e.g. to prevent rolling away).
- Observe the safety at work regulations of the country in question.
- Ensure adequate lighting conditions at the place of work.
- The place of work and the tools used must be in a clean and safe condition.
- Defective components may only be replaced with OEM spare parts. Only these parts ensure that the safety requirements are satisfied.
- During use of the CPC system, check all screw and plug connections at regular intervals.
2.5 Particular hazards

Danger of short-circuit!

Danger of short-circuits when working on the vehicle electrical system.

- Observe the vehicle manufacturer’s safety instructions.
- Switch off all electrical equipment before disconnecting the battery terminals.
- Disconnect the minus terminal **before** the plus terminal.

- Do not kink cables, place cables under strain or lay cables over sharp edges.
- Do not install cables in the vicinity of rotating, moving or hot parts.
- For cables, observe a bending radius of at least 15 mm (0.6 in.), for corrugated tubes a bending radius of at least 35 mm (1.4 in.).
- Ensure that plug connectors are clean and dry, and that they are securely locked after connection.
- Secure the wiring harness in a suitable manner max. 10 cm (4 in.) before and after each plug connection.
- Pay attention to effective sealing of the cable lead-throughs in the vehicle cab and in fuse and distributor boxes.
- Use only suitable tools for stripping the cable insulation and for crimping cable shoes.
- The installation of the CPC system on the vehicle (in particular when connecting to the power supply) must not influence the function of other systems on the vehicle (e.g. brake system or light system).
2.6 Qualification for installation

WARNING

Injury hazard with insufficient qualification.

Installation by unqualified personnel can result in considerable personal injury and equipment damage.

- Have all work carried out only by appropriately qualified personnel.

The following qualifications are specified in this Installation Manual:

- **Qualified personnel**

 deemed capable of independently carrying out the work assigned to them and of recognizing and avoiding possible dangers due to their technical training, know-how and experience and their knowledge of the relevant regulations.

The system may only be installed by persons who have been trained for this work and who have technical know-how of vehicle electronics and tire fitting.

NOTE

- The system may only be installed by specially authorized garages.
2.7 Personal protective equipment

⚠️ WARNING

Risk of injury due to wrong or missing protective equipment!

Personal protective equipment must be worn during installation in order to minimize health risks.

► Wear the necessary protective equipment for the work involved during the installation.

► Follow the instructions for personal protective equipment posted in the working area.

Wear the following protective equipment during installation:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wear protective goggles.</td>
</tr>
<tr>
<td></td>
<td>Wear protective gloves.</td>
</tr>
<tr>
<td></td>
<td>Wear safety shoes.</td>
</tr>
</tbody>
</table>
3 Technical data

![NOTE](image)

All components to be installed on the vehicle are designed for an operating temperature from -40°C to 85°C (-40 °F to 185 °F). If these temperatures are exceeded, a warning appears at the corresponding component.

3.1 Tire sensor

<table>
<thead>
<tr>
<th>Dimensions (L x W x H)</th>
<th>38 x 28 x 22 mm</th>
<th>1.5 x 1.1 x 0.86 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>26 g</td>
<td>0.92 oz</td>
</tr>
<tr>
<td>Transmission frequency</td>
<td>433 MHz</td>
<td></td>
</tr>
<tr>
<td>Typical service life*</td>
<td>6 years or 600,000 km</td>
<td>6 years or 373,000 miles</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40°C to 120°C</td>
<td>-40°F to 248°F</td>
</tr>
</tbody>
</table>

* Constantly high tire inside temperatures (caused e.g. by high ambient temperature, low tire pressure, etc.) can lead to a shortening on the battery service life.

3.2 Central control unit

<table>
<thead>
<tr>
<th>Dimensions (L x W x H)</th>
<th>165 x 121 x 65 mm</th>
<th>6.5 x 4.76 x 2.56 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>390 g</td>
<td>0.86 lbs</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>12/24 V</td>
<td></td>
</tr>
<tr>
<td>Reception frequency</td>
<td>433 MHz</td>
<td></td>
</tr>
<tr>
<td>Number of plugging cycles, min.</td>
<td>10 cycles</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Auxiliary receiver (optional)

<table>
<thead>
<tr>
<th>Dimensions (L x W x H)</th>
<th>90 x 42 x 28 mm</th>
<th>3.5 x 1.65 x 1.1 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>44 g</td>
<td>1.55 oz</td>
</tr>
<tr>
<td>Frequency</td>
<td>433 MHz</td>
<td></td>
</tr>
<tr>
<td>Number of plugging cycles, min.</td>
<td>10 cycles</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Display

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (L x W x H)</td>
<td>117 x 107 x 40 mm 4.6 x 4.2 x 1.57 in.</td>
</tr>
<tr>
<td>Weight</td>
<td>325 g 11.5 oz</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>12/24 V</td>
</tr>
<tr>
<td>Number of plugging cycles, min. Diagnostic</td>
<td>100 cycles</td>
</tr>
<tr>
<td>connecting plug</td>
<td></td>
</tr>
<tr>
<td>Power supply connecting plug</td>
<td>10 cycles</td>
</tr>
<tr>
<td>Number of plugging cycles, min. Connecting plate</td>
<td>5 cycles</td>
</tr>
<tr>
<td>bracket to display</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40°C to 85°C -40°F to 185°F</td>
</tr>
<tr>
<td>Legibility of the display without impairment</td>
<td>-20°C to 80°C -4°F to 176°F</td>
</tr>
</tbody>
</table>

3.5 Hand-held tool

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (L x W x H)</td>
<td>160 x 90 x 38 mm 6.3 x 3.54 x 1.5 in.</td>
</tr>
<tr>
<td>Weight</td>
<td>750 g 1.65 lbs</td>
</tr>
<tr>
<td>Charger supply voltage</td>
<td>220/110 V</td>
</tr>
<tr>
<td>Number of plugging cycles, min. for diagnostic</td>
<td></td>
</tr>
<tr>
<td>cable: Plug to hand-held tool</td>
<td>1,000 cycles</td>
</tr>
<tr>
<td>All 3 plugs to vehicle components</td>
<td>100 cycles</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-10°C to 50°C 14°F to 122°F</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40°C to 85°C -40°F to 185°F</td>
</tr>
</tbody>
</table>

3.6 Pressure control indicator

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (L x W x H)</td>
<td>140 x 140 x 160 mm 5.5 x 5.5 x 6.3 in.</td>
</tr>
<tr>
<td>Weight</td>
<td>115 g 4 oz</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>12/24 V</td>
</tr>
<tr>
<td>Number of plugging cycles, min.</td>
<td>100 cycles</td>
</tr>
</tbody>
</table>
4 Design and Function

4.1 Description of function

The ContiPressureCheck™ System (CPC System) permits continuous monitoring of the tire pressure and tire temperature. The status is shown on the display. In the event of a pressure drop in a tire, the driver immediately receives a corresponding warning.

The basic system consists of the central control unit (CCU) and the tire sensors. Each tire sensor on the inside of the tire transmits the measured data via a radio-frequency transmitter to the CCU. The analyzed data are then transmitted via the bus system to the display in the driver's cab. The system displays the required information during operation and monitors the temperature and pressure of the tires permanently. In the event of a deviation from the programmed value for the tires, a warning is immediately output to the display.

4.2 Overview

1. Tire sensor
2. Central control unit (CCU)
3. Display
4.3 Tire sensor

The tire sensor comprises a pressure sensor, temperature sensor, acceleration sensor, evaluation circuit, radio transmitter and lithium battery. The unit is cast in a plastic housing and is installed in a rubber container.

The rubber container is fixed to the inner layer of the tire (see also Chapter 5.4 Installation of the tire sensor).

1. Tire sensor
2. Rubber container
3. Direction of tire rotation
4. Quarter and year of manufacture

NOTE

- The battery service life under normal operating conditions is approx. 6 years or 600,000 km (373,000 miles).

- When the battery is old, the warning "NO RECEPTION" appears on the display. As this warning can also have other causes, the status of the battery has to be checked with the hand-held tool at the tire sensor. If the status "too weak" is displayed, replace the tire sensor with a new sensor.
4.4 Central control unit (CCU)

The data recorded by the tire sensor are transmitted by radio to the central control unit (CCU).

The radio links are provided by an antenna integrated into the housing of the control unit which ensures the fault-free reception of the pressure and temperature signals from all the tire sensors.

The CCU is designed for operation in a 12/24 Volt system.

The CCU is installed in a central position on the vehicle chassis so that fault-free radio communication with the tire sensors is assured. Special mounting brackets must be used for good radio reception (see Chapter 4.7 Mounting brackets).

The CCU for tractors, trailers and buses are available in two versions:

- Control unit with voltage regulator without control of the pressure control indicator (tractor EU/US market)
- Control unit with voltage regulator and control of the pressure control indicator (semi-trailer EU/US market)

The system can manage up to 24 tire sensors per control unit. Faults occurring during operation are stored in the electronics for diagnostic purposes.
4.5 Auxiliary receiver (optional)

An auxiliary receiver is necessary with:

- Longer distance (above approx. 4 m/4.4 yd) between the tires and the central control unit.
- Direct monitoring of the trailer (only the trailer is equipped with tire sensors).
- Vehicles with more than 2 axles.
- Buses.
- Vehicle configurations and types for which the auxiliary receiver is required are described at www.contipressurecheck.com.

NOTE

If the impact guard is not used,

- The ContiPressureCheck system must not be used for hazardous goods transport (see Chapter 14.3 ADR).
- Damage can occur to the auxiliary receiver.
- The range of the auxiliary receiver is reduced.

The auxiliary receiver must always be used with the impact guard.

1. Housing
2. Connecting plug
3. Impact guard
4.6 Display

A display is installed in the driver’s cab to show the tire information. This applies only to trucks and buses, not to trailers.

1. **SET** button: Switch between vehicle view and settings
2. **↓** button: Navigation between menu items and warning messages
3. **OK** button: Confirmation of the selected menu item
4. **+/−** button: Switch between pressure and temperature display

On the rear side are the jacks for:
- Power supply and communication
- Diagnostic cable

NOTE

- The display operates reliably in a temperature range from -20°C to 80°C (-4°F to 176°F). At temperatures below -20°C (-4°F) or above 80°C (176°F), the display may be impaired.
4.7 Mounting brackets

4.7.1 Mounting bracket for central control unit

A special mounting bracket is required for installation of the central control unit on the vehicle chassis in order to ensure good radio transmission.

NOTE

- Screws, washers and nuts for attachment of the central control unit to the mounting bracket are included in the installation kit.
- Screws for installation on the chassis are not included in the installation kit.

4.7.2 Mounting bracket for auxiliary receiver (optional)

A special mounting bracket is required for installation of the auxiliary receiver (and the corresponding impact guard) on the vehicle chassis in order to ensure good radio transmission.

NOTE

- Screws for installation on the chassis are not included in the installation kit.
- The original bracket must be used as the receiver and the mounting of the impact guard are matched to the bracket.
4.8 Wiring truck/bus with auxiliary receiver

In the truck/bus, the system is connected to the vehicle wiring harness is two sections:

- **Wiring harness C:**
 Wiring harness C comprises the connection of the CCU to a distribution point near the driver’s seat. This section is splash water-proof so that it can be laid on the outside of the vehicle.

- **Wiring harnesses A and B:**
 Wiring harnesses A (with integrated fuse) and B are designed only for installation inside the vehicle. One wiring harness to the display (wiring harness B), and one wiring harness with free cable ends for connection to the terminals of the vehicle fuses (wiring harness A).

Adapter cable for auxiliary receiver:

- **Wiring harness D:**
 The auxiliary receiver (optional) is connected to the CCU by wiring harness D.

The basic principle of the wiring on truck/bus with auxiliary receiver is shown in the following figure:

![Diagram of wiring setup](image_url)

1. Display
2. Central control unit (CCU)
3. Auxiliary receiver
4. Power supply (fuse box)
5. Fuse ATO 1 ampere - replaceable
4.9 Pressure control indicator trailer/semi-trailer

The trailer/semi-trailer can be operated with a separate CCU independent of the tractor. In this case a pressure control indicator is installed on the outside of the trailer.

An example of the positioning of the pressure control indicator is shown in the following figure:

![Pressure control indicator diagram]

NOTE

- Above a speed of 110 km/h (70 mph) the visibility of the pressure control indicator may be restricted.
4.10 Wiring trailer/semi-trailer

- **Wiring harness F + G:**
 Wiring harness F + G connect the CCU to the vehicle power supply (branch F) and the port for the hand-held tool/pressure control indicator (branch G).

- **Wiring harness H (optional):**
 The auxiliary receiver (optional) is connected to the CCU by wiring harness H.

The basic principle of the wiring on trailer/semi-trailer with auxiliary receiver is shown in the following figure:
4.11 Hand-held tool, diagnostic cable

After installation, the system is initialized using the hand-held tool.

The hand-held tool is connected to the display or to the diagnostic plug of the trailer by means of the diagnostic cable. A port is provided for this on the housing of the display and on the hand-held tool. The diagnostic plug of the trailer is the mating plug on the pressure control indicator (see branch G or wiring harness F+G).

| 1 | Charging cable port |
| 2 | USB and diagnostic cable port |

NOTE

- The hand-held tool operates reliably in a temperature range from -10°C to 50°C (14°F to 122°F). At temperatures below -10°C (14°F) or over 50°C (122°F), the display and transmitting power may be impaired.
- Detailed operating instructions for the hand-held tool can be found at www.contipressurecheck.com.
In the event of a fault in the hand-held tool, a second-hand replacement tool will generally be supplied within 24 hours of receipt of the defective tool, but not later than within 72 hours.

The costs for the replacement are determined by the relevant provisions of the warranty (see Chapter 1.7 Warranty terms).

4.12 Spare parts

The available spare parts and the corresponding article numbers can be found at www.contipressurecheck.com.
5 Installation

5.1 Scope of supply

NOTE

An overview of the different vehicle configurations and vehicle types for which the various kits of the ContiPressureCheck™ may be used can be found at www.contipressurecheck.com.

Check the completeness of the installation kit against the enclosed delivery note and inspect all parts for visible damages. The corresponding parts lists can be found at www.contipressurecheck.com.

On delivery of the system, note any damage due to improper packaging or transport damage on the delivery note and report it to your sales contact immediately.

5.2 Disposal of the packaging

The packaging protects the system against transport damage. The packaging materials have been selected in line with environmental and disposal aspects and are therefore recyclable.

Recycling of the packaging saves raw materials and reduces the production of waste. Dispose of packaging materials no longer required in accordance with the local regulations.

NOTE

If possible, keep the original packaging during the warranty period of the system in order to be able to pack components correctly in the event of a warranty claim.
5.3 General instruction

For proper and efficient installation and in order to avoid mistakes, the sequence of the installation steps described below must be strictly observed.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>► The CPC system must be installed no later than 2 years after packing of the kits due to ageing of the plastics (in particular of the rubber container and pressure control indicator) and due to the battery shelf life of the tire sensor before use (service life in operation). Refer to the sticker on the kit for the packing date.</td>
</tr>
<tr>
<td>► The service life of the Cyberbond 2250 adhesive is shorter (observe instructions on shelf life and method of storage on the packaging).</td>
</tr>
</tbody>
</table>

5.4 Installation of the tire sensor

5.4.1 Fundamental safety instructions:

- Installation may only be carried out by appropriately qualified personnel.
- The place of work must be adequately ventilated.
- Ensure adequate lighting conditions at the place of work at all times.
- The place of work and the tools used must be in a clean and safe condition.
- Store all products used according to the instructions on the packaging.
- Keep tools, cleansing agents and adhesives out of the reach of unauthorized persons and children.
5.4.2 Particular hazards

WARNING

Risk of injury!
Risk of injury when working with the pneumatic grinder!
- Observe the manufacturer’s safety instructions.
- Wear goggles and protective gloves.
- Wear ear protectors, if necessary.

WARNING

Risk of injury when working with Cyberbond 2250 adhesive!
Skin and eyelids are stuck together within seconds.
- Observe the manufacturer’s safety instructions.
- Wear goggles and protective gloves.

WARNING

Health hazard from cleansing agents!
Hazards in the form of burns, irritation of the skin or health-endangering vapors can occur when working with cleansing agents.
- Observe and comply with the cleansing agent manufacturer’s safety instructions.
- Wear protective gloves.
- Ensure good ventilation.
5.4.3 Tools and materials required

<table>
<thead>
<tr>
<th>Description</th>
<th>Image</th>
</tr>
</thead>
</table>
| Protective gloves | ![Glove](image)
(not included in the scope of supply) |
| 1 x Naphtha-based cleansing agent (e.g. TipTop Liquid Buffer, 500 ml) | ![Cleansing Agent](image)
Cleansing agent for pretreatment of the tire inner layer and the bonding surface of the tire sensor.
(not included in the scope of supply) |
| 1 x Cleaning cloth | ![Cleaning Cloth](image)
Cleaning cloth for cleaning the bonding surfaces.
(not included in the scope of supply) |
| 1 x Tire sensor press-in tool | ![Press-in Tool](image)
Article No.: 17340190000
Press-in tool insert
Article No.: 17340220000
Tool for pressing in the tire sensor during bonding. |
| 1 x Cyberbond 2250 special adhesive | ![Adhesive](image)
Article No.: 17340200000
Adhesive for attaching the tire sensor |
| 1 x Spatula | ![Spatula](image)
Article No.: 17340210000
Tool for spreading the adhesive on the tire sensor. |
| 1 x Cleaning scraper | ![Scraper](image)
Scraper for pretreatment of the tire inner layer.
(not included in the scope of supply) |
Additional tools for removing any ventilation ribs in the bonding area of the tire inner layer (not included in the scope of supply):

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic grinder, slow-running</td>
<td>(max. 3600 rpm)</td>
</tr>
<tr>
<td>Contour disc, for low speeds</td>
<td>(65 mm/2.56 in.)</td>
</tr>
<tr>
<td></td>
<td>e.g. TipTop Article No.: 595 4357</td>
</tr>
</tbody>
</table>

5.4.4 Place of work

Before starting work, prepare the place of work so that all the necessary tools and materials are within easy reach.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>► Bonding may only be carried out at an ambient temperature of 15°C to 35°C (59°F to 95°F).</td>
</tr>
<tr>
<td>► The place of work must be adequately ventilated.</td>
</tr>
<tr>
<td>► Position the tire so that the inner area of the tire is easily accessible and well illuminated.</td>
</tr>
</tbody>
</table>
5.4.5 Permissible tire sizes

Fundamentally all tubeless standard truck tires (permissible tire sizes, see table) are suitable for the installation of a tire sensor, as long as the sensor is properly installed and the surface of the tire inner layer corresponds to the normal market conditions.

| NOTE | The tire sensor must not be used in tires with inner tube. |

<table>
<thead>
<tr>
<th>Size</th>
<th>Tire Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>20"</td>
<td>12.00 R 20 TL</td>
</tr>
<tr>
<td></td>
<td>205/75 R 17.5</td>
</tr>
<tr>
<td></td>
<td>215/75 R 17.5</td>
</tr>
<tr>
<td></td>
<td>225/75 R 17.5</td>
</tr>
<tr>
<td></td>
<td>235/75 R 17.5</td>
</tr>
<tr>
<td></td>
<td>245/75 R 17.5</td>
</tr>
<tr>
<td>17.5"</td>
<td>225/70 R 19.5</td>
</tr>
<tr>
<td></td>
<td>245/70 R 19.5</td>
</tr>
<tr>
<td></td>
<td>265/70 R 19.5</td>
</tr>
<tr>
<td></td>
<td>285/70 R 19.5</td>
</tr>
<tr>
<td>19.5"</td>
<td>275/80 R 22.5</td>
</tr>
<tr>
<td></td>
<td>295/80 R 22.5</td>
</tr>
<tr>
<td></td>
<td>315/80 R 22.5</td>
</tr>
<tr>
<td></td>
<td>295/75 R 22.5</td>
</tr>
<tr>
<td></td>
<td>255/70 R 22.5</td>
</tr>
<tr>
<td></td>
<td>275/70 R 22.5</td>
</tr>
<tr>
<td></td>
<td>305/70 R 22.5</td>
</tr>
<tr>
<td></td>
<td>315/70 R 22.5</td>
</tr>
<tr>
<td></td>
<td>365/70 R 22.5</td>
</tr>
<tr>
<td></td>
<td>385/65 R 22.5</td>
</tr>
<tr>
<td>22.5"</td>
<td>11 R 24.5</td>
</tr>
<tr>
<td></td>
<td>12 R 24.5</td>
</tr>
</tbody>
</table>
5.4.6 Bonding position in the tire

The correct position of the bonding surface is:

- In the middle of the tire inner layer.
- In the area of the DOT stamp.

| Dimensions of the bonding surface: | approx. 6 x 6 cm (2.4 x 2.4 in.) |
| Dimensions of the area to be cleaned: | approx. 7 x 7 cm (2.8 x 2.8 in.) |

NOTE

- The rubber container with integral tire sensor must be able to be in full, flush contact with the bonding surface.
- Areas with protrusions or recesses which cause the rubber container to only contact the surface at individual points are not suitable for bonding.
- Remove ventilations ribs in the area of the bonding surface before the bonding process. See Chapter 5.7 Removing ventilation ribs in the bonding area.
- Avoid direct sunlight and drafts on the bonding area.
5.4.7 Pretreatment of the bonding surface

- Shake the spray can (e.g. Liquid Buffer).
- Spray the complete dry bonding surface to be cleaned with the cleanser from a distance of approx. 20 cm (8 in.).

- Immediately chip the bonding surface to be cleaned using the scraper under slight pressure and in different directions until the bonding surface is dry. Take care not to damage the tire inner layer.

- Immediately clean the bonding surface to be cleaned thoroughly with the cleaning cloth. Wipe only in one direction and always use clean areas of the cleaning cloth. Do not rub any dirt or debris into the bonding surface.

- Repeat the cleaning steps until the bonding surface is optically free from residues.

- Mark the outer edge of the bonding surface with chalk.

- Allow the cleaned surface to breathe for approx. 3 minutes after the cleaning steps.
5.4.8 Installing the tire sensor in the rubber container

NOTE

- The tire sensor is normally supplied pre-assembled in the rubber container.

- Fold over the sealing lip of the rubber container.
- Wet the remaining surface in the container slightly with fitting paste.
- Place the tire sensor in the rubber container.
- Fold the sealing lip of the container up again. The direction of rotation arrows on the container are continued on the sensor (see figure). The sealing lip of the container must lie uniformly on the top of the sensor around the circumference.
5.4.9 Inserting the rubber container with integrated tire sensor into the pressing tool

- Place the inlay part in the pressing tool so that the two arrows on the inlay part correspond with those on the pressing tool.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not use the pressing tool without the inlay part.</td>
</tr>
</tbody>
</table>

- Place the rubber container with integrated tire sensor in the inlay part so that the two direction of rotation arrows on the tire sensor correspond with those on the inlay part.

- The container base surface must be in contact with the press-in tool all round, otherwise check the position of the sensor in the container.

5.4.10 Cleaning the bonding surface on the rubber container

- Shake the spray can (e.g. Liquid Buffer).
- Spray the cleansing agent onto the cleaning cloth and wet the bonding surface.
- Then thoroughly clean the bonding surface using the cleaning cloth, always using a clean area of the cloth.
- Carry out this cleaning operation at least twice.
- Allow the cleaned surface to breathe for approx. 3 minutes after the cleaning steps.
5.4.11 Bonding in the rubber container with integrated tire sensor

NOTE

- The Cyberbond 2250 adhesive contains a fluorescent agent which allows to check, if the right adhesive has been used, even after bonding.

- Check the position of the rubber container with integrated tire sensor in the pressing tool.
- Apply 1 unit (see graduation marks on flask) of the special adhesive to the bonding surface of the tire sensor and spread uniformly using the spatula.
- Immediately after applying the adhesive, press the rubber container with integrated tire sensor perpendicularly onto the cleaned bonding surface using the pressing tool. See Chapter 5.4.6 Bonding position in tire for the correct positioning of the tire sensor on the tire inner layer.
- Press the rubber container with integrated tire sensor perpendicularly, firmly and steadily onto the tire inner layer with a weight of at least 5 kg (11 lbs.) for approx. 45 seconds using the press-in tool. **Do not tilt!**

The position of the tire sensor is correct when the arrows on the rubber container are facing in the direction of rotation of the tire.
5.5 Final inspection of the bonding of the rubber container

- Inspect the bond visually. When bonded correctly, the rubber container with integral tire sensor is in full, flush contact with the inner layer of the tire.

- Carefully wipe away any remaining adhesive around the edge of the rubber container. Do not pull on the tire sensor or rubber container for (at least) the first 15 minutes.

- Before fitting the tire, activate the tire sensor using the hand-held tool. The tire can then be fitted on the wheel.

5.6 Tire sensor activation before fitting tire

Before the tire is fitted on the wheel, a function check of the tire sensor has to be carried out.

Proceed as follows:

- Call up menu item "Activate sensor" on the hand-held tool and confirm with "OK."

- Insert the hand-held tool into the tire directly next to the tire sensor.

This checks the function of the tire sensor and activates the sensor.

The following messages are possible:

<table>
<thead>
<tr>
<th>Display</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Tire sensor OK"</td>
<td>The function proper is confirmed. The tire can be fitted.</td>
</tr>
<tr>
<td>"Tire sensor not OK"</td>
<td>Replace the tire sensor.</td>
</tr>
<tr>
<td>"Battery too weak"</td>
<td>Replace the tire sensor.</td>
</tr>
</tbody>
</table>
5.7 Removing ventilation ribs in the bonding area

ATTENTION

Material damage due to damage to the tire inner layer!

Damage to the inner tire layer can cause impairment of the service life of the tire.

- Remove only the ventilation ribs.
- Have the work carried out only by personnel trained in tire repairs.

Tools required:

- Marking pen or chalk
- Goggles, protective gloves
- Slow-running pneumatic grinder
- Brass brush
- 65 mm (2.56 in.) contour disc
- Wet/dry vacuum cleaner

Proceed as follows:

- Mark the area of approx. 8 x 8 cm (3.15 x 3.15 in.) to be roughened with a marking pen or chalk.
- Roughen the tire inner layer using a contour disc, removing all the ventilation ribs in the bonding area until the surface is smooth. Press the contour disc only slightly and move continuously so that it does not remain in the same spot.

Note

- Create a rough patch of Type RMA 3 using the contour disc.

- Clean the roughened area with a brass brush.
- Completely remove all roughening dust with a wet/dry vacuum cleaner.
- Then continue the bonding process as described earlier. Avoid long waiting times.
5.8 Retreading

- Before retreading the tire, remove the tire sensor. The rubber container can remain in the tire.
- After retreading, install the tire sensor in a new container, see Chapter 5.4.8 Installing the sensors in the rubber container and install in the tire.

NOTE

- If no bladder is used during the retreading process and the process temperature is below 100°C (212°F), the tire sensor can remain in the tire.

5.8.1 Instructions for tire fitting

NOTE

- In order to be able to better identify the position of the tire sensor from the outside after fitting the tire, position the tire sensor bonded into the tire in the area of the DOT stamp close to the valve seat.
- When fitting the tire using tools such as tire levers, ensure that these do not damage the tire sensor.

5.9 Continued use of the tire sensor after changing a tire

If continuing to use the tire sensor after changing a tire, pay attention to the indicated battery service life and the running life of the sensor indicated in Chapter 3.1 Technical data - Tire sensor.
5.10 Use of balancing substances in commercial vehicle tires

Numerous balancing substances from different manufacturers are available on the market for filling tubeless truck and bus tires before the fitting process. These are predominantly pellets, pastes or liquids and mineral-based substances whose effect (in operation) is intended to eliminate the need for conventional balancing of the wheels.

We neither recommend nor expressly forbid the use of these substances in our tires: Continental Reifen Deutschland GmbH can give no generally applicable comments on the quality and field of application of these substances as they can vary from manufacturer to manufacturer.

The user of such substances should ask the respective manufacturer/dealer about their properties in detail before using them in tires. Ultimately the user has to decide on the method of balancing of commercial vehicles tires and on the use of balancing substances with respect to the specific operating conditions of the tire.

Tire damage and damage to the ContiPressureCheck™ components caused or enhanced by the use of balancing substances is not covered under the ContiPressureCheck™ warranty.

Balancing substances should be completely removed from the removed tire before the tire is sent to the incoming inspection for retreading or repair. We should also point out that we will completely remove any balancing substances in tires sent to us with complaints. Balancing substances removed from the tires will not be returned nor will any refund be given.
5.11 Installation of the central control unit on HGV/bus

ATTENTION

Damage to the control unit!
When selecting a suitable installation location, observe the following points to avoid damage to the control unit:
► Avoid proximity to sources of high temperatures (e.g. exhaust system) and to rotating or moving parts.

5.11.1 Determining the installation location on the longitudinal member of the truck

- The unit must be installed mid-way between the first and last axle (± 0.5 m/20 in.).
- Install the mounting bracket so that the CCU extends as far as possible under the longitudinal member in order to ensure good radio contact with the tire sensors (maintain safety distances e.g. to the road). For good radio contact, the CCU must not be shielded by metal barriers in the direct vicinity.
- Select the distance from the driver's cab such that the length of the wiring harness C (9 m/29.5 ft.) is sufficient to extend into the fuse box in the driver's cab.

NOTE
► The protruding length of the bracket (distance: Lower edge of chassis frame to control unit) must not exceed 12 cm / 4.7 inch (see Chapter 5.11.2 Mounting).
5.11.2 Mounting

- Use at least 2 suitable existing bores in the longitudinal member for fixing the mounting bracket. Measure the distance between the existing bores, transfer to the mounting bracket and install.

- Mount the CCU on the mounting bracket using the mounting material included in the installation kit. Position the central control unit so that the plug connector is facing to the rear of the vehicle.

- Use suitable installation materials (bolts min. M10, strength class min. 8.8, self-locking nuts and washers dia. ≥ 24 mm/1 in.) for attachment to the longitudinal members.

5.11.3 Installation location on the bus

An auxiliary receiver is always necessary on the bus.

- Install the CCU in the trunk as close as possible to the front axle.

- Install the auxiliary receiver as close as possible to the rear axle(s) (preferably in the trunk).
5.12 Installing an auxiliary receiver (optional)

An auxiliary receiver is necessary to improve the radio contact on vehicles with a long wheelbase and on vehicles with more than 2 axles.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an auxiliary receiver is installed, install the CCU near the front axle and the auxiliary receiver on the rear of the vehicle.</td>
</tr>
</tbody>
</table>

5.12.1 Installation of an auxiliary receiver for trailer monitoring

An auxiliary receiver on the rear of the tractor unit is required for direct monitoring of the trailer tires, i.e. when only the trailer is fitted with tire sensors.

- The mounting bracket for installation of the auxiliary receiver is predrilled to match common tractor units. If the corresponding hole pattern is not available, find other suitable holes in the rear of the vehicle and drill holes in the mounting bracket accordingly.
- The receiver must face with the open end of the mounting bracket towards the semi-trailer and must be installed as close to the ground as possible.
- Use suitable installation materials (bolts strength class min. 8.8, self-locking nuts and washers) to install the mounting bracket. Push in the auxiliary receiver with the plug coupling facing upwards.
5.12.2 Fitting the impact guard to the auxiliary receiver

When wiring harness D has been connected to the auxiliary receiver (see Chapter 5.13 Installation of the wiring harness from central control unit to auxiliary receiver), fit the impact guard.

- Push the impact guard over the auxiliary receiver and anchor in the holder.

- Insert the 4 snap hooks into the corresponding openings of the bracket and press the impact guard against the bracket so that all 4 snap hooks are engaged.

NOTE

If the impact guard is not used,

- The ContiPressureCheck system must not be used for hazardous goods transport (see Chapter 14.3 ADR).
- Damage can occur to the auxiliary receiver.
- The range of the auxiliary receiver is reduced.
5.13 Installation of the wiring harness from central control unit to auxiliary receiver

Wiring harness D of the auxiliary receiver is already fitted with watertight connectors.

- Connect the plug side of the CCU first.
- Lay the cable along the existing wiring harness of the vehicle and fasten loosely with cable straps.
- Thread the plug of the auxiliary receiver through the back of the mounting bracket and connect to the receiver.
- Secure the cable at the leadthrough hole of the plug with a cable strap.
- Secure the cable along the vehicle wiring harness sufficiently with cable straps.
- At the mounting bracket of the CCU, secure the adapter cable with a cable strap (to the mounting bracket).
- Lay the excess cable in loops and secure with at least two cable straps.
5.14 Installation of the wiring harness from central control unit to fuse box

ATTENTION

Damage to the wiring harness!
When laying the wiring harness, observe the following points to avoid damage to the harness:

- Avoid proximity to sources of high temperatures (e.g. exhaust system) and to rotating or moving parts.

- Connect the plug end of wiring harness C to the CCU or to the mating plug of wiring harness D (if used).
- From there, lay the cable along the existing wiring harness of the vehicle to the driver's cab and fasten loosely with cable straps.
- Lay the wiring harness to the fuse box of the vehicle (see also vehicle operating manual).
- Finally secure the cable along the vehicle wiring harness with cable straps once again.
5.15 Installation of the display

WARNING

Risk of injury!
The risk of injury cannot be ruled out if the installation instructions are not followed.

- Attach the display to the windshield offset to the side from the driver and passenger(s).
- Do not install the display in the body, head or airbag area (driver & passengers).

- Place the display into the bracket supplied, paying attention to complete engagement.

- Determine a suitable installation location on the windshield. Pay attention to possible interference from sunlight.

NOTE

The vehicle driver must have a sufficient field of view under all operating and weather conditions.

- Install the display as low as possible so that the driver's field of view is not obstructed.
5.16 Installation of the wiring harness from display to fuse box

ATTENTION

Danger of short-circuit!

Switch off the ignition before starting work.

Basic principle of the wiring:

![Diagram of wiring harness]

One plug connector is used for each pair of conductors:
- Plug connector 1 (white): BN & WH
- Plug connector 2 (black): RD & BK

Proceed as follows for installation:

- Identify a suitable cable leadthrough behind the instrument panel from the display to the fuse box; components of the instrument panel may have to be loosened for this (see operating manual).
- Lay wiring harness B behind the instrument panel. Lay the open end from the instrument panel to the fuse box.
- Secure the cable sufficiently with cable straps.
- Secure loosened parts of the instrument panel again.
- Identify terminals 15 Ignition (IGN) and the ground cable terminal 31 (GND) in the fuse box. Pay attention to the special instructions in the vehicle operating manual.
Lay wiring harness A to cables B and C, starting from the fuse box. The integrated fuse remains in the wiring harness.

ATTENTION

Danger of short-circuit!
Risk of short-circuit if the fuse is not installed.
- Do not shorten the supply line A on the fuse side.

First fit spade connectors to the two CAN terminals (brown/white) of wiring harness C of the CCU and fit the white connector housing (pay attention to polarity notch, see arrow).

Then fit spade connectors to display wiring harness B and fit the white connector housing (pay attention to polarity lug, see arrow).

(The cable shoes and connector housings are included in the installation kit.)

Connect cables KL 15 and 31 of wiring harness A, B and C together using the cable shoes included in the installation kit (plug connector 2). The polarity of the connectors is already predetermined by the wiring harness.

Connect terminals 15 Ignition (red) and ground cable terminal 31 (black).

Then close the fuse box again securely, ensuring that after completion of the installation that the original leak tightness of the fuse box is retained.

Connect the plug of the wiring harness to the display.

- See also the figure in Chapter 4.8 *Wiring truck/bus with auxiliary receiver.*
5.17 Installation of the central control unit and an optional auxiliary receiver on the trailer/semi-trailer

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ On complex trailers/semi-trailer (e.g. more than 3 axles), the use of an auxiliary receiver is recommended. In this case the CCU should be positioned as close as possible to the first/last axle, and the auxiliary receiver as close as possible to the last/first axle (determine the position of the CCU according to the access to the distributor box and the installation position of the pressure control indicator).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the control unit!</td>
</tr>
<tr>
<td>The control unit can be damaged by its proximity to high temperatures, rotating or moving parts.</td>
</tr>
<tr>
<td>➤ When selecting the installation location, avoid proximity to high temperatures and to rotating or moving parts.</td>
</tr>
</tbody>
</table>

- Install the mounting bracket of the CCU at a suitable location in the area mid-way between the axles.
- Allow the CCU to extend as far as possible downwards in order to ensure a good radio link to the tire sensors (observing safety distances, e.g. to the road). For good radio contact, the central control unit must not be shielded by metal barriers in the direct vicinity.
Lay branch G of wiring harness F+G provisionally along the vehicle (detailed described in Chapter **5.19 Installation of the wiring harness from central control unit to pressure control indicator, diagnostic port and distributor box**), to check whether the length of branch G is sufficient to connect the CCU and the pressure control indicator. The position of the pressure control indicator may have to be adjusted accordingly.

5.18 Installation and adjustment of the pressure control indicator.

5.18.1 Installation position of the pressure control indicator

The installation of the pressure control indicator is preferably between first and second side-marker lamp on the left-hand side of the vehicle. With long trailers, the pressure control indicator can also be installed further back due to the wiring harness length available. Install the pressure control indicator similar to a side-marker lamp on the vehicle.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The pressure control indicator must not obstruct the visibility of the side-marker lamp.</td>
</tr>
<tr>
<td>Keep a free beam angle of at least 45° in front of and behind side-marker lamps.</td>
</tr>
<tr>
<td>Side-marker lamps must not be removed or repositioned.</td>
</tr>
<tr>
<td>The pressure control indicator is not a substitute for a side-marker lamp or other lights. It does not belong to the vehicle lighting in accordance with regulation UN ECE R 48. It may only be installed on the vehicle in conjunction with the ContiPressureCheck™ system.</td>
</tr>
</tbody>
</table>
ATTENTION

Damage to the pressure control indicator!

Risk of damage if the pressure control indicator is installed in the marked area for crane loading.

► Do not use the marked area if the vehicle is loaded by crane.

ATTENTION

Damage to the pressure control indicator!

If the pressure control indicator is installed on vehicle with dropsides there is a risk of damage to the bracket of the pressure control indicator by the falling tailgate. The rubber arm of the pressure control indicator may be deformed by the falling dropside. The deflection movement of the rubber arm should not be obstructed by unevenness and projecting parts on the dropside.

► Position the bracket of the pressure control indicator accordingly and check the deformation of the rubber arm.

Conditions of the installation position

- For good adjustability, position the pressure control indicator approx. 30-40 mm (1.2 to 1.6 in.) from the outer edge of the vehicle. When the rubber arm is in middle position, the pressure control indicator extends approx. 20 mm (0.8 in.) beyond the outer edge of the vehicle.
The pressure control indicator can also lie further inwards, e.g. on road tankers, so that the visibility in the left side mirror is assured when driving straight ahead.

Install the bracket of the pressure control indicator in horizontal position.

If the pressure control indicator cannot be installed directly on the frame parts of the vehicle, a corrosion-resistant adapter (e.g. of sheet aluminium) must be manufactured. The adapter should be dimensioned such that swinging of the pressure control indicator is ruled out. The form and size of the adapter can be similar to the adapter for the side-marker lights of the respective vehicle. Observe the slot dimensions on the bracket for the pressure control indicator.

Immediately coat all bores drilled in the vehicle frame with a corrosion inhibitor.
5.18.2 Installation of the pressure control indicator.

Install the bracket for the pressure control indicator in the two positions A in the middle of the slot, if possible, in order to be able to readjust during installation.

- Drill 2 holes with 5.5 mm (0.2 in.) diameter at position A in the frame or adapter with 70 mm (2.75 in.) spacing. Coat the bores with corrosion inhibitor.
- Secure the pressure control indicator with 5 mm (3/16 in.) diameter screws. Type of screws: Self-locking with spring preload.
- Use washers of 15 mm (5/8 in.) diameter to fix the bracket of the pressure control indicator.

NOTE
- Fastening only at position B or with only one screw is not permitted.

NOTE
- Screws and washers are not part of the installation kit.
5.18.3 Adjustment of the pressure control indicator.

The pressure control indicator has a beam angle of 5°. In this range it has the optimum illuminance. Outside this beam angle the illuminance decreases very rapidly.

The diameter of the beam at a distance of 7 m (23 ft.) is approx. 60 cm (2 ft.).

Figure: Pressure control angle with beam directed at a mirror.
5.18.3.1 Adjustment with tractor unit in front of the trailer

- Position the vehicle straight.
- Cause the pressure control indicator to light up using the hand-held tool. To do this, connect the diagnostic cable to the hand-held tool and the plug of the pressure control indicator and switch on the hand-held tool.
- Loosen the lock nut on the bracket of the pressure control indicator.
- Loosen the slide ring from the rubber arm for optimum adjustment of the pressure control indicator.
- Align the pressure control indicator roughly with the main rear-view mirror of the driver's cab.
 Help for the fitter of the pressure control indicator: Preset the maximum illuminance via the spherical mirror.
- Align the pressure control indicator so that the driver can see the pressure control indicator perfectly in the rear-view mirror. Ensure that the center axis of the light beam of the pressure control indicator is in the top right-hand area of the mirror. This is checked in the following point.
- Check position:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bend rubber arm slightly upwards and towards the vehicle</td>
<td>Illuminance decreases slightly.</td>
</tr>
<tr>
<td>Move in the opposite direction</td>
<td>Illuminance remains the same.</td>
</tr>
</tbody>
</table>

- If necessary, correct alignment of the pressure control indicator.
Installation

- Tighten lock nut finger-tight (2 Nm), so that the ball joint of the rubber arm can no longer move within the mounting.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ The material becomes more rigid at low temperatures.</td>
</tr>
<tr>
<td>▶ At temperatures below 2°C (35.6°F) the tightening torque should not exceed 2 Nm, otherwise there is a risk of damage.</td>
</tr>
<tr>
<td>▶ At higher temperature, check and adjust the tightening torque accordingly.</td>
</tr>
</tbody>
</table>

- Check the visibility of the pressure control indicator during the test drive and “Teach-in of ContiPressureCheck™.” If necessary, correct alignment.

5.18.3.2 Prealignment of the pressure control indicator on the trailer without tractor unit

- Before uncoupling the tractor unit, determine the position of the pressure control indicator on the trailer.
- By surveying from this position, mark the upper edge of the main mirror on the corner of the trailer.
- Switch on the installed pressure control indicator and align roughly with the mark.
- Check the pressure control indicator from the marked point on the trailer. Movement of the head from the marked position on the trailer:

<table>
<thead>
<tr>
<th>Movement</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>approx. 20-30 cm (1 ft.) right</td>
<td>Illuminance decreases slightly.</td>
</tr>
<tr>
<td>approx. 20-30 cm (1 ft.) down</td>
<td>Illuminance decreases slightly.</td>
</tr>
<tr>
<td>approx. 20-30 cm (1 ft.) up</td>
<td>Illuminance remains the same.</td>
</tr>
</tbody>
</table>
◆ Check position of the pressure control indicator later with tractor unit.

◆ Check position:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bend rubber arm slightly upwards and towards the vehicle</td>
<td>Illuminance decreases slightly.</td>
</tr>
<tr>
<td>Move in the opposite direction</td>
<td>Illuminance remains the same.</td>
</tr>
</tbody>
</table>

◆ If necessary, readjust the pressure control indicator.

◆ Tighten lock nut finger-tight (2 Nm), so that the ball joint of the rubber arm can no longer move within the mounting.

■ Check the visibility of the pressure control indicator during the test drive and “Teach-in of ContiPressureCheck™.” Correct alignment, if necessary.

NOTE

▸ The material becomes more rigid at low temperatures.
▸ At temperatures below 2°C (35.6°F) the tightening torque should not exceed 2 Nm, otherwise there is a risk of damage.
▸ At higher temperature, check and adjust the tightening torque accordingly.
5.19 Installation of the wiring harness from the central control unit to pressure control indicator, diagnostic port and distributor box

NOTE

- If an auxiliary receiver was installed on the trailer/semi-trailer, connect wiring harness H with the auxiliary receiver and the CCU. Installation instructions can be found in Chapter 5.13 *Installation of the wiring harness from central control unit to auxiliary receiver.*

ATTENTION

Damage to the wiring harness!

The wiring harness can be damaged by the proximity to high temperatures, rotating or moving parts.

- When laying the wiring harness, avoid proximity to sources of high temperatures (e.g. exhaust system) and to rotating or moving parts.

- Connect the plug end of wiring harness F+G to the CCU or to the mating plug of wiring harness H (if used).

- Lay the wiring harness (branch G) along the existing wiring harness of the vehicle to the pressure control indicator and fasten loosely with cable straps. Connect the plug of branch G to the plug of the pressure control indicator. Wind up the rest of branch G in loops and secure in an appropriate manner to the vehicle using at least 2 cable straps.
Lay branch F from the CCU along the existing wiring harness to the distributor box or to the vehicle power supply and fasten loosely with cable straps.

Find a suitable cable leadthrough in the distributor box and thread in the cable.

Shorten branch F, if necessary, to the required length.

In the distributor box, fasten the fuse supplied to the plus cable (red) using the cable shoes in the installation kit.

In the distributor box, identify terminals UBat and GND. Pay attention to the special instructions in the vehicle operating manual.

Connect the red cable in branch F (incl. fuse) to terminal UBat and the black cable to terminal GND.

Then close the distributor box again securely, ensuring that after completion of the installation that the original leak tightness of the distributor box is retained.

Finally secure branches F and G along the vehicle wiring harness with cable straps once again.

5.20 Checks after installation

After completing installation, check all systems of the vehicle (e.g. brake and lighting system) for proper function.
6 Initialization using hand-held tool

For initialization using the hand-held tool, proceed as follows:

- Switch on the hand-held tool.
- Select menu item Installation / New installation.
- Follow the instructions on the hand-held tool.

NOTE

When setting the nominal pressure for the individual axes, pay attention to the tire manufacturers’ instructions.

On completion of the inputs, the vehicle configuration is displayed on the display of the hand-held tool.

- Confirm the vehicle configuration or select a different configuration.
- The latest list of vehicle configurations approved for installation can be found at www.contipressurecheck.com. Should this list not correspond to the vehicle configuration stored in the hand-held tool, update the software of the hand-held tool (Details on updating the software of the hand-held tool see manual of the hand-held tool).

NOTE

The vehicle operator must ensure that the CPC system is correctly installed and activated. This includes setting the nominal pressures recommended in the tire guide, correct assignment of the tire sensors to the wheel position, etc.
Confirmation of the vehicle configuration is followed by the teach-in of the tire sensors. The tire position to be read out is displayed on the hand-held tool.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄 The first axle is shown on the left-hand side of the hand-held tool display, the last axle on the right-hand side.</td>
</tr>
</tbody>
</table>

- Hold the hand-held tool in the wheel position shown and against the side wall and follow the animation on the display.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄 The hand-held tool can remain on the outer of the twin tires when reading out the tire sensor of the inner tire.</td>
</tr>
</tbody>
</table>

- After reading out the last tire sensor, connect the hand-held tool via the diagnostic cable as follows:
 - On truck and bus, to the diagnostic plug of the display
 - On the trailer, to the diagnostic plug of the pressure control indicator
- Follow the instructions on the hand-held tool (the control unit is configured).
Initialization using hand-held tool

- After successful configuration, switch off the control unit for at least 30 seconds. To do this, switch off the ignition or turn off the battery main switch if the control unit on the trailer has been connected to a permanent power supply. Then continue with Chapter 7 *Test drive for system testing*.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ If ATL* (automatic trailer detection) was selected, only one nominal pressure can be set for all the tires on the trailer.</td>
</tr>
</tbody>
</table>

* ATL is an optional function and is not activated on all CPC systems.

During later operation:

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ After replacing or changing the position of one or more tire sensors, reset the telegram counter in the display, see Chapter 11.1 Diagnostics via display - Reset telegram counter.</td>
</tr>
</tbody>
</table>
7 Test Drive for System Testing

7.1 Test drive for system testing on the HGV/bus

To test the whole system, carry out a test drive as follows:

◆ Connect the hand-held tool to the display and select menu item "Installation / Test drive truck/bus."

◆ Start test drive.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ A progress bar is displayed on the screen during the test drive.</td>
</tr>
<tr>
<td>➤ The test drive can be aborted at any time by holding the ESC key pressed for at least 3 seconds.</td>
</tr>
<tr>
<td>➤ Should one of the following warnings appear on the display during the test drive:</td>
</tr>
<tr>
<td>VERY LOW PRESSURE.</td>
</tr>
<tr>
<td>PRESSURE LOSS</td>
</tr>
<tr>
<td>SENSOR DEFECTIVE</td>
</tr>
<tr>
<td>TEST SENSOR</td>
</tr>
<tr>
<td>abort the test drive, remedy the fault and repeat the test drive.</td>
</tr>
<tr>
<td>➤ At speeds above 30 km/h (18.6 mph), the test drive is normally completed after 5 minutes.</td>
</tr>
</tbody>
</table>

After the start of the menu, the display on the hand-held tool changes to the bird’s eye perspective, the left-hand side shows the first axle of the vehicle.

The transmission power of the tire sensors (RSSI) or the number of telegrams received is shown in the tire symbols.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Switch between the two displays (RSSI and number of telegrams) with the arrow keys left and right.</td>
</tr>
</tbody>
</table>
At the end of the test drive, the following is displayed on the hand-held tool:

<table>
<thead>
<tr>
<th>Display</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reception OK</td>
<td>Test drive was successful.</td>
</tr>
<tr>
<td>Poor reception</td>
<td>Test drive was not successful. Wheel positions with inadequate reception are indicated by a flashing display.</td>
</tr>
<tr>
<td>Failed</td>
<td>Test drive was not successful (number of radio signals too low). The corresponding wheel positions are indicated by a flashing display.</td>
</tr>
</tbody>
</table>

NOTE

Truck and trailer

- After a successful test drive, the results are automatically saved. If there are no data in the hand-held tool, the input of a registration number or vehicle serial number is prompted.

If the test drive is not completed successfully, correct the position of the CCU.

- Adjust the CCU closer to the wheel position indicated by the flashing display.
- Position the CCU lower by loosening the mounting bracket and moving the unit closer to the road.

On vehicles with a very long wheelbase, continue with Chapter 5.12 Installation of an auxiliary receiver.

After the test drive, finally read out the error messages (Diagnostic Trouble Codes: DTCs).

- If there are active DTCs: Remedy the fault (see at www.contipressurecheck.com) and repeat the test.
- If there are passive DTCs: Erase all DTCs.
7.2 Test drive for system testing on the semi-trailer

Preparation for the test drive:
- Disconnect the plug of wiring harness F+G (branch G) from the pressure control indicator.
- Connect the hand-held tool to branch G via the diagnostic cable and select menu item "Installation / Test drive trailer / Initialization."

When the operation has been successfully completed:
- Disconnect the hand-held tool.
- Connect branch G to the pressure control indicator.
- Carry out the test drive without the hand-held tool.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>At speeds above 30 km/h (18.6 mph), the test drive is normally completed after 5 minutes.</td>
</tr>
</tbody>
</table>

The test drive is completed when the pressure control indicator lights up for 60 seconds.
- Connect the hand-held tool to branch G again and select menu item "Installation / Test drive trailer / Evaluation."

For the display on the hand-held tool and for working instructions, see Chapter 7.1 Test drive for system testing on the truck.

After the test drive, finally read out the error messages (Diagnostic Trouble Codes: DTCs).
- If there are active DTCs: Remedy the fault (see at www.contipressurecheck.com) and repeat the test.
- If there are passive DTCs: Erase all DTCs.

- Finally switch off the hand-held tool and disconnect it from branch G.
- Connect branch G to the pressure control indicator.
7.3 Preparation for repeating a test drive

If a test drive has to be repeated, e.g. after repositioning of the mounting bracket of the CCU, all the tire sensors have to be reset to Park mode (MP) before the start of the test drive.

The menu "Prepar. additional test drive" shows the aerial view of the vehicle.

The corresponding wheel position is displayed on the hand-held tool.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>► The first axle is shown on the left-hand side of the hand-held tool display, the last axle on the right-hand side.</td>
</tr>
</tbody>
</table>

◆ Hold the hand-held tool in the wheel position shown and against the side wall and follow the animation on the display.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>► The hand-held tool can remain on the outer of the twin tires when resetting the tire sensor of the inner tire to Park mode.</td>
</tr>
</tbody>
</table>

When all the tire sensors have been reset to Park mode, the hand-held tool displays “Vehicle ready for next test drive.”

◆ Continue with Chapter 7 Test drive for system testing.
If changes are made later to the CPC system installation, the configuration of the CCU has to be modified with the hand-held tool.

8.1 Automatic wheel change detection (optional function)*

If, during operation, a single tire with tire sensor is replaced, the CPC system detects this automatically. Reconfiguration with the hand-held tool is not necessary.

- The new tire sensor is generally detected automatically during the first drive after the tire change.
- This process is completed after approx. 10 minutes' driving time.
- During the teach-in process, no pressure value is displayed in the corresponding tire symbol.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>► If the detection fails during the first drive, the message "NO RECEPTION" appears on the display for this tire position and the pressure control indicator flashes slowly. When the ignition is switched on again, the detection should function successfully.</td>
</tr>
</tbody>
</table>

* Automatic tire change detection is an optional function and is not activated in all CPC systems.
8.2 Manual adaptations with the hand-held tool

A reconfiguration of the CPC system is necessary and possible in the following cases:

- Switching the auxiliary receiver on/off
- Changing the status of an axle (lift axle yes/no)
- Changing the nominal pressure for an axle
- Changing the position of the tire sensors
- Replacement of at least 2 tire sensors (new tire sensors)

To do this, call up the following menus on the hand-held tool and follow the instructions on the hand-held tool:

- "Modification - Modify/check installation - Modify CCU parameters"
- "Modification - Modify/check installation - Modify sensor IDs"

If the changes exceed the scope described above, a re-initialization is necessary as described in Chapter 6 Initialization via hand-held tool.

9 Documentation of system installation

After successful installation, the vehicle configuration must be transmitted to a computer and printed out for documentation purposes.

This document contains all the tire IDs, the vehicle configuration, the installed components and the result of the test drive (RSSI and number of telegrams).

This document must be signed by the installer and the garage manager/supervisor.

A copy must be placed in the vehicle.
Information on the system

10 Information on the system

10.1 General

- ContiPressureCheck™ provides assistance in monitoring tire pressures. The responsibility for the correct tire pressure lies with the driver.
- Correct the tire pressure only when the tire temperature corresponds to the ambient temperature.

10.2 Operation

During operation of the system, carry out the following measures:

- Clean the light surface of the pressure control indicator at regular intervals.
- The driver must ensure that the pressure control indicator can be seen in the rear-view mirror. For this, the pressure control indicator lights up for 10 seconds at each vehicle start.
- Keep the CCU and the auxiliary receiver free of dirt and debris, e.g. snow and sludge, so that the reception power is not impaired.

11 Diagnostics

A diagnostic guide (incl. the diagnostic function of the hand-held tool) and corresponding working instructions can be found at www.contipressurecheck.com.

This chapter deals with the diagnostic instructions and diagnostic possibilities of the display.
Diagnostics

<table>
<thead>
<tr>
<th>Status information</th>
<th>Error code</th>
<th>Remarks</th>
<th>Possible cause of error</th>
<th>Working instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM ERROR</td>
<td>1001</td>
<td>No CANbus connected.</td>
<td>CANbus cable from display to CCU not connected.</td>
<td>Check cable connections.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCU has no power supply.</td>
</tr>
<tr>
<td>SYSTEM ERROR</td>
<td>1002</td>
<td>CAN data incomplete.</td>
<td>No system configuration found OR No tire sensor data found OR No position allocation of the tires to CAN found.</td>
<td>Connect hand-held tool to display and read out error codes from CCU. Follow working instructions on hand-held tool.</td>
</tr>
<tr>
<td>SYSTEM ERROR</td>
<td>1003</td>
<td>CAN data incomplete.</td>
<td>No system status found.</td>
<td>Connect hand-held tool to display and read out error codes from CCU. Follow working instructions on hand-held tool.</td>
</tr>
<tr>
<td>SYSTEM ERROR</td>
<td>1004</td>
<td>Read out errors in CCU.</td>
<td>Error in memory or microcontroller of CCU.</td>
<td>Connect hand-held tool to display and read out error codes from CCU. Follow working instructions on hand-held tool.</td>
</tr>
<tr>
<td>SYSTEM ERROR</td>
<td>1005</td>
<td>System deactivated via the hand-held tool.</td>
<td></td>
<td>Activate system via the hand-held tool.</td>
</tr>
<tr>
<td>Status information</td>
<td>Error code</td>
<td>Remarks</td>
<td>Possible cause of error</td>
<td>Working instructions</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>DISPLAY ERROR</td>
<td>1006</td>
<td>Display defective.</td>
<td>Connect hand-held tool to display and read out error codes from CCU. Follow working instructions on hand-held tool.</td>
<td></td>
</tr>
<tr>
<td>1007</td>
<td></td>
<td>Display defective.</td>
<td>Connect hand-held tool to display and read out error codes from CCU. Follow working instructions on hand-held tool.</td>
<td></td>
</tr>
<tr>
<td>SYSTEM NOT ACTIVE</td>
<td></td>
<td>No tire sensor data received.</td>
<td>No tire sensors installed OR Sensors not yet activated. Carry out function check of the tire sensors as described in the Installation Manual.</td>
<td></td>
</tr>
<tr>
<td>SYSTEM NOT CONFIGURED</td>
<td></td>
<td>CCU not OR not yet successfully configured.</td>
<td>Carry out configuration process with hand-held tool.</td>
<td></td>
</tr>
</tbody>
</table>
11.1 Diagnostics via display

Call up diagnostic display:

Hold the **SET button pressed and press** the button. The following appears on the display:

1. Tire sensor ID
2. Wheel position (see Chapter 11.1.1 Example of the wheel positions)
3. Battery charge:
 0 = OK
 1 = Replace tire sensor
4. Number of telegrams since last ignition start
5. Number of telegrams since last reset of the control unit
6. Transmission power in percent compared with tire sensor with highest transmission power
7. A visible arrow indicates that you can scroll to further diagnostic pages which contain data on further tire sensors installed
Reset telegram counter:

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>► After replacing or changing the position of one or more tire sensors, the telegram counter in the display must be reset.</td>
</tr>
</tbody>
</table>

Hold the **OK** button pressed and press the **↓** button simultaneously to reset the telegram counter.

Display device information:

Hold the **SET** button pressed and press the **OK** button simultaneously to display the software and hardware version and the production date of the display:

1. SW- Ver. XXXXXX
2. HW- Ver. XXXXXX
3. Production Date XX.XX.XX DD.MM.YY

1. Software version
2. Hardware version
3. Production date

Return to pressure/temperature display:

◆ Press **SET** button
11.1.1 Example of the wheel positions

Configuration

<table>
<thead>
<tr>
<th>4x2 truck</th>
<th>6x trailer</th>
</tr>
</thead>
</table>

Matrix

<table>
<thead>
<tr>
<th>3</th>
<th>5</th>
<th>9</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wheel position

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front left 03</td>
</tr>
<tr>
<td>Front right 0B</td>
</tr>
<tr>
<td>Rear left outer 53</td>
</tr>
<tr>
<td>Rear left inner 55</td>
</tr>
<tr>
<td>Rear right inner 59</td>
</tr>
<tr>
<td>Rear right outer 5B</td>
</tr>
<tr>
<td>Trailer 1st axle left B3</td>
</tr>
<tr>
<td>Trailer 1st axle right BB</td>
</tr>
<tr>
<td>Trailer 2nd axle left C3</td>
</tr>
<tr>
<td>Trailer 2nd axle right CB</td>
</tr>
<tr>
<td>Trailer 3rd axle left D3</td>
</tr>
<tr>
<td>Trailer 3rd axle right DB</td>
</tr>
</tbody>
</table>

Axle numbers 0 to 5 are used for the drawing vehicle, 8 to D for the drawn vehicle.
12 Dismantling and Disposal

12.1 Dismantling

CAUTION

Danger of short-circuit!

Danger of short-circuits when working on the vehicle electrical system.

- Observe the vehicle manufacturer's safety instructions.
- Switch off all electrical equipment before disconnecting the battery terminals.
- Disconnect the minus terminal **before** the plus terminal.

The system may only be dismantled by appropriately qualified personnel in observance of local safety regulations.

- Disconnect all plugs of the wiring harnesses.
- Remove the cable straps.
- Remove the wiring harnesses.

Central control unit:

- Remove the CCU by loosening the retaining screws of the mounting bracket and removing the mounting bracket with the CCU.
- Pull the CCU from the mounting bracket.

Auxiliary receiver:

- Remove the auxiliary receiver (optional) by loosening the screws of the mounting bracket and removing the mounting bracket with the auxiliary receiver.
- Remove the auxiliary receiver from the mounting bracket.
Pressure control indicator:

- Remove the pressure control indicator by loosening the retaining screws of the bracket and removing the bracket with the pressure control indicator.

Display:

- Pull the display out of the mount.
- Remove the mount from the windshield.

Complete system:

- Dispose of all system components as described in Chapter 12.2 Disposal.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>If unprotected bores are left in the vehicle frame after removal of the CPC system, these must be sealed with zinc spray.</td>
</tr>
</tbody>
</table>
12.2 Disposal

The manufacturer is committed to the protection of the environment. As with other old devices, the system can be returned to the manufacturer via the normal channels. For details of disposal, please contact your authorized sales partner.

- Sort metals and plastics carefully for recycling or scrapping.
- Dispose of problem materials that can no longer be used, such as cleansing agents or electronic components (CCU, auxiliary receiver) as special wastes in accordance with the statutory waste disposal regulations.

12.2.1 Tire sensor

NOTE

- Before disposal of a tire, the tire sensor has to be removed. If the tire sensor is to continue to be used, pay attention to the service life and operating time of the tire sensor as described in Chapter 3.1 Technical data - Tire sensor.

The tire sensor contains a lithium battery that is cast into the housing and cannot be replaced. On reaching the end-of-life, the tire sensor must be disposed of in accordance with all current local, regional and national laws and regulations. For this, a return to an authorized CPC sales partner or the return to the central CPC collection point (address, see Chapter 12.2.4 CPC collection point) is necessary.
12.2.2 Hand-held tool

The hand-held tool contains a rechargeable lithium battery that is cast into the housing. On reaching the end-of-life, the hand-held tool must be disposed of in accordance with all current local, regional and national laws and regulations. For this, a return to an authorized CPC sales partner or the return to the central CPC collection point (address, see Chapter 12.2.4 CPC collection point) is necessary.

12.2.3 Electrical/electronic components

All other electrical/electronic components except tire sensor and hand-held tools must be disposed of in accordance with local, regional and national laws and regulations.

In case of any questions, please contact your local authority responsible for waste disposal.

12.2.4 CPC collection point

Address:
Continental Trading GmbH
"Abteilung Entsorgung"
VDO-Straße 1
Gebäude B14
64832 Babenhausen
Germany
13 Declaration of conformity

The CPC complies with the fundamental statutory requirements and relevant regulations of the European Union (EU) and the USA.

The complete declaration of conformity can be found in the package leaflet "Declaration of Conformity" or at www.contipressurecheck.com.

14 Certifications

The individual certificates are included with the system documents and/or at www.contipressurecheck.com.

14.1 Radio permit

A radio permit for the CPC system has been granted in the following countries.

See list of countries in package leaflet "Homologation certificate vehicle components."

14.2 General operating permit

A general operating permit (ABE) from the German Federal Motor Vehicle Transport Authority (KBA) is available for the CPC system.

See package leaflet "ABE certificate"

14.3 ADR

The CPC system is suitable in principle for hazardous goods transport (ADR) vehicles.

A test report to ADR 2011 exists for the CPC system and contains the approved hazardous goods classes (see package leaflet "ADR test report").

The latest version can be found at www.contipressurecheck.com.
Index

A
Abbreviations .. 8
After-sales service 10
Automatic
wheel change detection............................ 72
Auxiliary receiver 22

B
Balancing substances 44

C
Central control unit 21
Certifications
ADR ... 84
General operating permit 84
Radio permit .. 84
Continued use of
the tire sensor 43
CPC collection point 83

D
Declaration of conformity 84
Demands on personnel 15
Description of function 19
Diagnostic cable 28
Diagnostics ... 74
Diagnostics via display 77
Dismantling ... 80
Display .. 23
Disposal .. 82
 Display .. 83
 Hand-held tool 83
Packaging ... 30
Tire module ... 82

Documentation of
system installation 73

E
Explanation of symbols 7

F
Fundamental
safety instructions 13

H
Hand-held tool ... 28

I
Initialization using
hand-held tool ... 65
Installation of an auxiliary
receiver .. 47
Installation of the central
control unit on the tractor unit 45
Installation of the central
control unit on the
trailer/semi-trailer 54
Installation of the display 51
Installation of tire sensor
 Bonding of the
 rubber container 40
 Bonding position in the tire 36
 Final inspection
 of the bonding 41
 Particular hazards 32
 Permissible tire sizes 35
 Pressing tool 39
 Pretreatment of the bonding
 surface ... 37
Index

- Removal of ventilation ribs: 42
- Safety instructions: 31
- Tools required: 33

Installation of wiring harnesses
- From central control unit to auxiliary receiver: 49
- From central control unit to fuse box: 50
- From central control unit to pressure control indicator, diagnostic port and distributor box: 63
- From display to fuse box: 52

Intended use: 12

L
Liability disclaimer: 7

M
Manufacturer’s address: 10
Modification of the CPC system configuration: 72
Mounting bracket
 - Auxiliary receiver: 24
 - Control unit: 24

P
Particular hazards: 14
Personal protective equipment: 16
Pressure control indicator: 26
 - Alignment: 59
 - Installation: 58
 - Installation position: 55

R
Retreading: 43

T
Technical data
- Auxiliary receiver: 17
- Central control unit: 17
- Display: 18
- Hand-held tool: 18
- Pressure control indicator: 18
- Tire sensor: 17
- Test drive: 68
- Semi-trailer: 70
- Truck: 68
- Tire sensor: 20
- Tire sensor activation: 41

W
Warnings: 9
Warranty terms: 10
Wiring
- Trailer/semi-trailer with auxiliary receiver: 27
- Truck/bus with auxiliary receiver: 25